

Language context can resolve visual ambiguity

But context-aware STR methods are typically limited to:

- Monotonic decoding (one character at a time)
- Unidirectional context (usually left-to-right)

Recent two-stage approaches are inefficient

ABINet (Fang *et al.* CVPR'21)

Language Model accounts for 35% of the parameters but is:

- Underutilized (uses only 13.65% of total FLOPS)
- Error-prone due to lack of visual context (50.44% word accuracy with ground truth label as input)

Image is the primary input signal in STR, not language context

→ The Language Model should also **consider visual context**

Scene Text Recognition with **Permuted Autoregressive Sequence Models**

Darwin Bautista and Rowel Atienza University of the Philippines

prior characters as context

"SHOP"

Key Idea

Unify models using AR ensemble

PARSeq: A unified model for STR

Learning PARSeq with Permutation Language Modeling:

PARSeq is flexible, accurate, and efficient

• $PARSeq_{N}$ for constant-time inference (non-autoregressive)

 $P(\mathbf{y}|\mathbf{x})_{[1,2,3]} = P(y_1|\mathbf{x})P(y_2|y_1,\mathbf{x})P(y_3|y_1,y_2,\mathbf{x})$ $P(\mathbf{y}|\mathbf{x})_{[3,2,1]} = P(y_3|\mathbf{x})P(y_2|y_3,\mathbf{x})P(y_1|y_2,y_3,\mathbf{x})$ $P(\mathbf{y}|\mathbf{x})_{[1,3,2]} = P(y_1|\mathbf{x})P(y_3|y_1,\mathbf{x})P(y_2|y_1,y_3,\mathbf{x})$ $P(\mathbf{y}|\mathbf{x})_{[2,3,1]} = P(y_2|\mathbf{x})P(y_3|y_2,\mathbf{x})P(y_1|y_2,y_3,\mathbf{x})$

> $P(y_t | \mathbf{y}_{\neq t}, \mathbf{x})$ **Bidirectional Iterative**

Refinement model

• PARSeq₁ for more accurate results (autoregressive)

Results SOTA in STR benchmarks								
				36-char y	word acc.			
evious Work	Method	Conf.	Train data	7,248 samples	7,672 samples			
	SRN	CVPR'20	MJ,ST	90.4				
	TextScanner	AAAI'20	MJ,ST+		91.0			
	Bhunia et al.	ICCV'21	MJ,ST	_	90.9			
	VisionLAN	ICCV'21	MJ,ST	91.2				
	PREN2D	CVPR'21	MJ,ST	91.5				
Pr	ABINet	CVPR'21	MJ,ST+	92.7				
Ours	PARSeq _N		MJ,ST	92.0±0.2	90.7±0.2			
	PARSeq _A		MJ,ST	93.2 ±0.2	91.9 ±0.2			
	PARSeq _N		real	95.7±0.1	95.2 ± 0.1			
	PARSeq _A		real	96.4 ±0.0	96.0 ±0.0			

Robust vs occlusion and arbitrary orientation

Wider gap in more challenging datasets

Method	Train data	ArT 35,149	COCO 9,825	Uber 80,551	Total 125,525
ViTSTR-S	real	81.1±0.1	74.1 ± 0.4	78.2 ± 0.1	78.7±0.1
TRBA	real	82.5 ± 0.2	77.5 ± 0.2	81.2 ± 0.3	81.3±0.2
ABINet	real	81.2 ± 0.1	76.4 ± 0.1	71.5 ± 0.7	74.6 ± 0.4
PARSeq _N	real	83.0 ± 0.2	77.0 ± 0.2	82.4 ± 0.3	82.1±0.2
PARSeq _A	real	84.5 ±0.1	79.8 ±0.1	84.5 ±0.1	84.1 ±0.0

t	Input	Output
CCA	Ve	
l	2	3rdAve
01		
	RL	CARLTON
effe	ion i	

36-char word accuracy per dataset